

Hydrodynamic Cavitation Innovation in Brewing: Efficiency, Quality, and the Central Role of CDR BeerLab®

Dr. Francesca Bruni, researcher at the CDR Chemical Lab "Francesco Bonicolini"

P2604

1. Introduction: The Paradigm Shift in Beer Production

The modern brewing industry is undergoing a fundamental transition, evolving from traditional practices to a cutting-edge approach to high-precision process engineering. The challenge for contemporary brewers is double: reducing the energy footprint of processes and maximizing the retention of temperature-sensitive bioactive compounds while preserving the organoleptic integrity of the final product.

In this scenario, hydrodynamic cavitation (HC) has emerged as a technological game changer. It is not an incremental optimization, but a paradigm shift capable of integrating and replacing critical phases such as mashing and boiling, operating on micro- and nanometer scales. However, industrial adoption of these technologies requires rigorous analytical validation. The **CDR BeerLab®** system represents a key point for process control, providing the data needed to translate complex fluid dynamics into certified operational excellence and the desired quality of the finished product.

2. Technological Fundamentals of Hydrodynamic Cavitation (HC)

Hydrodynamic cavitation is a physical phenomenon characterized by the formation, growth, and subsequent implosion of vapor bubbles in a liquid, triggered by a drop in local pressure below the vapor pressure. As the bubbles collapse, localized mechanical energy (shock waves and micro-jets) and extreme point temperatures are released, while maintaining a moderate bulk temperature.

For the treatment of high-viscosity musts loaded with suspended solids, the **Venturi tube reactor** has proven to be superior in engineering to orifice plates, ensuring fluid-dynamic stability and drastically reducing the risk of fouling or blockages. Process intensity is controlled by the **Cavitation Number (σ)**, defined by the ratio between static and dynamic pressures. Advanced experimental data confirm that the yeast lethality efficiency is not linear, but presents two critical local maxima at $\sigma = 0.3$ and $\sigma = 1.7$, fundamental parameters for fine-tuning the reactor.

From a thermodynamic point of view, HC offers unique advantages:

- **Semi-Adiabatic Heating:** The mechanical energy supplied by the pump is converted directly into heat by volumetric internal friction, eliminating the need for high-temperature heat exchange surfaces.
- **No Thermal Gradients:** Uniform heating of the fluid volume prevents the formation of "hot spots", eliminating the risk of sugar caramelization and preserving color stability (EBC).

- **Kinetic Efficiency:** Cellular disintegration and starch extraction occur mechanically, dramatically accelerating enzymatic kinetics.

3. Operational Analysis: Energy Efficiency and Extractive Enhancement

As part of the [TILA \(Innovative Technology for Food Liquids\) project](#), cavitation technology was explored for beer production, aiming to reduce production times and energy consumption. Experimental evidence gathered during the trials shows a clear gap between the traditional (TR) and cavitation-assisted (HC) processes. HC technology simplifies plant architecture, eliminating dry grinding and drastically reducing boiling times.

Operating Parameter	Traditional Process (TR)	HC Process (CAVIBEER)	Dominant Physical Mechanism
Energy Consumption (Cycle)	Reference 100%	Reduction > 30-40%	Elimination of boiling and reduction of heat losses
Yeast Inactivation (Energy)	Reference 100%	Reduction ~ 20%	Synergy between mechanical and thermal stress
Processing Times	Standard Cycle	Reduction > 50%	Acceleration of mass transfer and saccharification
Starch Extraction Efficiency	Standard	30% increase	Mechanical disintegration of grains
Saccharification Temperature	~ 68-70°C	**~ 33-35°C**	Reduction of the gradient by ~35°C by mechanical means

Reducing the saccharification temperature to around 33-35°C is not only a thermal saving, but a transformation of the process kinetics that minimizes oxidative stress on the aromatic precursors.

4. Qualitative Excellence and Bioactive Profiles

Hydrodynamic cavitation dramatically improves the nutritional quality of beer. Instead of destroying or losing the valuable compounds in hops, as happens in traditional brewing with a strong, prolonged boil, this method protects them and actually increases their presence in the final product. Here are the main advantages:

• Xanthohumol (XN) and DMX (desmethylxanthohumol) :

These are two super-important prenylated flavonoids in hops, known for their antioxidant, anti-inflammatory, and potentially disease-protective properties. During conventional boiling, almost all of the xanthohumol is converted into a less active form (isoxanthohumol). With hydrodynamic cavitation (HC), this transformation is greatly reduced.

In one sample tested during the project trials, the amount of DMX actually increased by 136% compared to the

initial amount: the process practically protected these valuable compounds 100%.

• **6-Geranylnaringenin (6-GN):**

This is another rare and highly bioactive compound found in hops, which has antioxidant effects and other benefits. Cavitation greatly promotes its formation from precursors present in hops.

In the same sample with a high DMX concentration, 55 µg/L were reached, a very high level that exceeds that typical of pale ales and approaches that of dark beers, which are normally richer in this compound. The conversion was 20.9%, while in the traditional method it is practically zero.

• **Gentle pasteurization to protect aromas:**

To make the beer stable and safe, eliminating residual yeasts such as *Saccharomyces cerevisiae*, usually requires heating to high temperatures (like 62-63°C). With cavitation, reaching just 52°C is enough to inactivate 90% of the yeast.

It's a sort of "cold pasteurization": the delicate and volatile aromas of hops, such as fresh, herbaceous, and citrusy notes, are preserved much better because they aren't "cooked" by excessive heat.

• **Reducing gluten to produce "gluten-reduced" or gluten-free beers with traditional grains:**

Proline is the most "stubborn" part of gluten, the one that resists digestion the most and creates problems for those with gluten sensitivity.

By applying specific cavitation regimes during boiling and fermentation, this proline can be degraded naturally, without added enzymes or radical recipe changes. Result: beers with very low gluten content or even "gluten-free" according to the standards can be produced using normal barley or wheat, maintaining the traditional flavor and style.

Simply put, this technology not only saves energy and makes the process more efficient, but it also produces a beer richer in healthy hop compounds, more aromatic, more stable, and potentially suitable for those with limited gluten tolerance. It's a major step forward for high-quality, more "functional" beers!

5. The Role of CDR BeerLab®: Optimization and Scientific Validation

In the CNR experiments, the **CDR BeerLab®** was not just a simple monitoring tool, but the primary device for validating the mathematical models of yeast lethality (thermal FT and cavitation FC). Photometric precision allowed these models to be rigorously calibrated, quantifying the reduction in cell viability based on the cavitation regimes applied. Without this accuracy, the optimization of fluid dynamic parameters would remain theoretical.

Immediate Process Tuning: what CDR BeerLab® allows you to do in practice

Thanks to rapid and precise analyses, it is possible to adjust the process in real time:

- **IBU and XN Monitoring** : Adjusts the pressure valve to optimize the cavitation number σ based on hop extraction.
- **Sugar analysis** : indicates the residual viability of the yeast, validating the lethality models on the spot (more residual sugars = less viable yeast).
- **Determination of color and alcohol stability**: verification of the absence of oxidation and regularity of fermentation after cavitation.

The precision of the CDR BeerLab® allowed us to correlate real data with lethality, experimentally identifying the peaks of maximum efficiency at $\sigma = 0.3$ and $\sigma = 1.7$. Thanks to these continuous photometric measurements, the researchers confirmed and optimized the process in a concrete and reliable way.

6. Conclusions: Towards Brewery 4.0

The integration of "CAVIBEER" technology and the analytical precision of the **CDR BeerLab®** paves the way for the industrial brewing of the future. The results are clear: energy savings of over 30%, cycle times halved, and an enhanced bioactive profile.

The synergy between advanced fluid engineering and rigorous quality control is the cornerstone of sustainable, healthy, and technically superior production. The transition to a brewery 4.0 necessarily involves this union of mechanical innovation and analytical certainty.